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Abstract

Africa is the birthplace of anatomically modern humans, and is the geographic origin of human 

migration across the globe within the last 100,000 years. The history of African populations has 

consisted of a number of demographic events that have influenced patterns of genetic and 

phenotypic variation across the continent. With the increasing amount of genomic data and 

corresponding developments in computational methods, researchers are able to explore long-

standing evolutionary questions, expanding our understanding of human history within and 

outside of Africa. This review will summarize some of the recent findings regarding African 

demographic history, including the African Diaspora, and will briefly explore their implications 

for disease susceptibility in populations of African descent.

Introduction

Current paleontological and genetic evidence indicates that anatomically modern humans 

(AMHs) arose in Africa ~200 thousand years ago (kya) and have lived continuously on the 

African continent longer than in any other geographic region. African populations are 

characterized by higher levels of within-population and between-population genetic 

diversity relative to non-Africans consistent with a larger long-term effective population size 

of ancestral African populations [1–3]. The history of Africans has encompassed other 

demographic events such as population structure, admixture, long-range and short-range 

migration that have shaped patterns of genetic variation in modern populations [1,4]. In 

recent years, the resequencing of large portions of the genome and their analysis with new 

computational methods have increased power to infer past demographic events at an 
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unprecedented resolution. Most notably, the recent finding that non-African populations 

share ancestry with Neanderthals, consistent with a model of archaic introgression, has 

provided additional insights into human evolutionary history. However, the extent of archaic 

admixture in diverse African populations still remains unclear. Given the central role of 

Africa in human evolution, characterizing extant genomic variation in diverse Africans will 

be important for reconstructing both ancient and recent demographic events, and for 

identifying variants that play a role in disease susceptibility in African populations. Here, we 

summarize our current knowledge of modern human origins and patterns of genetic diversity 

in populations of African descent, as well as explore their implications for the risk of 

complex disease.

The origin of anatomically modern humans in Africa

The earliest suite of derived morphological traits associated with AMHs was identified in 

fossils from Ethiopia dating to ~160–195 kya (Figure 1; Table 1) [5–7]. Other early AMHs 

displaying modern features were also found in Ethiopia, Sudan, Tanzania and South Africa 

dating to >100 kya and in the Middle East dating to ~100 kya (Figure 1; Table 1) [8–12]. 

Although eastern Africa has often been considered the geographic location of modern 

human origins ~200 kya, some have argued that South Africa is the site where AMHs 

originated. Indeed, a recent study suggested that the geographic distribution of genetic 

diversity in Africa, as measured by linkage disequilibrium (LD), is more consistent with a 

South African origin of modern humans [13]. However, this inference does not account for 

the possibility that the geographic location of populations in the present may have differed 

in the past. Furthermore, a large-scale analysis of southern African populations 

demonstrated the difficulty of localizing the origin of modern humans using summary 

statistics of diversity, such as LD [14••]. Nevertheless, regardless of the precise location of 

origin, paleontological and genetic evidence indicates that AMHs evolved on the African 

continent.

Recent archaeological data also showed that modern behavior (such as symbolic culture and 

complex tool production) arose at a relatively early stage of human evolution, contrary to 

prior studies that argued for the later development of complex cognition ~45 kya [15,16]. In 

particular, technological advances in the form of heat-treated microlith stone tools were 

found in southern Africa dating to ~71 [17•,18]. The use of pigment, art and ornamental 

shells, indicative of artistic expression, was also documented as early as 164 kya in South 

Africa [19,20] and around 87 kya in northern Africa [21]. In addition, it has been suggested 

that the highest levels of linguistic diversity occur in Africa and that linguistic diversity 

decreased as modern humans migrated across the globe from Africa ~50–70 kya [22•,23]. 

Thus, key behavioral and morphological traits that define modern Homo sapiens may have 

evolved fairly closely together in Africa over the last 200,000 years.

Ancient population structure in Africa

Several studies suggest that ancestral African populations were genetically differentiated 

before the expansion of modern humans from Africa ~50–100 kya. In particular, analyses of 

autosomal loci inferred divergence between the ancestors of Khoesan-speaking San hunter-
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gatherers and other African populations >100 kya [14••,24•,25–29]. This inference is in 

agreement with mtDNA and Y-chromosome studies that estimated divergence between the 

ancestors of Khoesan-speakers and other sub-Saharan Africans at >90 kya [14••,30–32]. 

Analyses have also detected substantial genetic differentiation in Central Africa, particularly 

between Pygmy and nonPygmy populations that are inferred to have separated ~60–70 kya 

(Figure 2) [30,33,34]. These estimates of divergence suggest an ancient origin of Khoesan-

speaking and Pygmy hunter-gatherer genetic lineages, and provide evidence for deep genetic 

structure in Africa.

In addition, a genome-wide study of a larger set of diverse Africans detected even more 

extensive population structure within Africa. Specifically, an analysis of 848 short tandem 

repeat polymorphisms (STRPs), 476 insertion-deletions (INDELs) and 3 single nucleotide 

polymorphisms (SNPs) genotyped in ~2400 individuals from 121 geographically diverse 

populations indicated 14 genetically divergent ancestral population clusters in Africa [3]. 

Each cluster consisted of populations that shared genetic similarity, as well as cultural 

and/or linguistic properties (e.g. Pygmies, Khoesan-speaking hunter-gatherers, Bantu-

speakers, Cushitic-speakers). Thus, populations that speak languages belonging to the same 

linguistic family, for example, tend to have high levels of genetic relatedness. However, in 

some cases, there is discordance between linguistic and genetic affiliation due to a language 

shift, which can occur when the language of an expanding population is adopted by another 

population with little accompanying gene flow [3,35]. In addition, some linguistically-

defined groups have shown evidence of fine-scale genetic differentiation, such as the 

northwestern and southeastern Khoesan-speakers in the Kalahari who are proposed to have 

separated within the last 30,000 years, as well as the Bantu and non-Bantu Niger-

Kordofanian-speakers in western Africa [3,36,37•]. Overall, the observed population sub-

division in Africa could have been facilitated by a number of factors, including physical 

barriers such as mountains and desert, as well as past climatic shifts that may have isolated 

sub-populations for periods of time followed by limited contact between groups [38,39].

Archaic admixture in Africa

With the recent increase in whole genome sequence data from fossil remains, a number of 

studies have identified regions of the genome in non-African populations that likely 

originated from archaic hominins, such as Neanderthals and Denisova (Figure 2) [24•,40–

44,45••,46,47, 48•,49]. As more researchers explore the possibility of introgression in 

Africa, evidence for archaic admixture in African populations is emerging [50–53]. For 

example, a resequencing study of 61 autosomal intergenic regions detected longer blocks of 

LD than expected under a model of no admixture in western Biaka Pygmy hunter-gatherers, 

and suggested that these divergent haplo-types may have been introduced into the ancestors 

of the Biaka Pygmies by an unknown hominin species in Central Africa (Figure 2) [51]. A 

whole genome sequence analysis also identified overlapping regions of inferred 

introgression among Hadza, Sandawe, and Pygmy hunter-gatherers consistent with an 

admixture event with an archaic hominin in Africa predating the divergence of these 

populations [26••]. Additionally, a recent comparative study of African and Neanderthal 

genomes reported Neanderthal ancestry in East African and African American populations 

[47,54••,55•]. However, it was inferred that this introgression was likely due to recent 
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admixture with non-Africans who could have introduced archaic DNA into these 

populations of African descent [47,55•]. Interestingly, a survey of Y-chromosome variation 

found a lineage (A00) that is highly divergent from other known lineages in an African 

American individual which could have an archaic origin [56]. Additional analyses are 

needed, however, to determine whether or not the presence of this unusual genetic lineage 

arose in humans through ancient population structure or archaic introgression.

Given the poor preservation of DNA in African fossils, direct comparison between modern 

and archaic African genomes, analogous to analyses of archaic admixture in non-Africans, is 

not currently feasible [1]. Therefore, until high quality archaic DNA is recovered in Africa, 

future studies will need to rely on robust computational methods, together with additional 

African genomic data, to further explore this question of ancient admixture, including the 

timing and location of admixture events. Intriguingly, the presence of archaic DNA in 

African populations also raises the possibility that the higher levels of diversity in sub-

Saharan Africans compared to non-African populations could partially be the result of 

archaic admixture [57].

Migration and admixture

Although ancient admixture remains challenging to infer, more recent migration and 

admixture in Africa have become increasingly clear. One of the most significant migration 

events in recent history has been the expansion of Bantu-speaking agriculturalists first into 

the equatorial rainforests and then into eastern and southern Africa ~3–5 kya (Figure 3). 

Studies of autosomal and Y-chromosome loci have reported a relatively high level of shared 

variation among western Bantu Niger-Kordofanian-speakers as well as the presence of 

Bantu Niger-Kordofanian ancestry in many eastern and southern African populations [3,58], 

consistent with widespread migration across Africa. Furthermore, the highest frequency of 

the Y-chromosome lineage, E1b1a, typically associated with the Bantu expansion, occurred 

in western Africa and the frequency clinically decreased with geographic distance from this 

region, suggesting migration from an origin in western Africa [58,59]. These genetic results 

are congruent with linguistic data that proposed a West/West Central African origin for the 

spread of Bantu languages into East and South Africa [60–64]. Thus, the radiation of Bantu-

speakers simultaneously involved the movement of people, language, and genes across the 

continent [35].

Other major migration events in Africa include the dispersal of Nilo-Saharan-speakers from 

Sudan both west-ward into Lake Chad ~8000 years ago and eastward to Kenya and Tanzania 

~3000 years ago (Figure 3) [2,57]. Many Nilo-Saharan-speakers in East Africa also have 

high levels of Cushitic Afroasiatic ancestry, implying a long history of admixture between 

Nilo-Saharan and Cushitic-speakers, in agreement with archaeological data [2,3,65]. Recent 

data have also demonstrated the presence of the East African-specific mutation (C-14010) 

associated with lactose tolerance in southern Africa, suggesting gene flow between these 

geographic regions [66,67,68••,69]. Additionally, although present-day northern Africans 

are genetically differentiated from sub-Saharan Africans, populations in northern Africa 

have low levels of ancestry from western and eastern Africa [3,57,70–76], likely reflecting 
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historic migration from these geographic regions into different parts of North Africa (Figure 

3).

The genetic history of Africans has also been influenced by back-migration of non-African 

populations into Africa (Figure 3). For example, a genome-wide analysis detected 

substantial Maghrebi/Near Eastern ancestry in North African populations, resulting from 

ancient and recent migration of non-Africans into North Africa pre-sumably within the last 

40,000 years [77]. Studies have also found a high proportion of non-African ancestry in 

Cushitic-speakers and Semitic-speakers from East Africa attributed to admixture >7 kya 

[78], as well as low levels of West Eurasian ancestry (European or Middle Eastern) in 

Khoe–Kwadi Khoesan-speakers in southern Africa [79]. The West Eurasian component 

present in southern African Khoe–Kwadi-speakers could have been acquired indirectly by 

these populations through admixture with migrating pastoralists from East Africa who have 

high levels of Cushitic ancestry [3,79,80]. This hypothesis of gene flow from eastern to 

southern Africa is further supported by other genetic and archaeological data documenting 

the spread of pastoralism from East to South Africa ~2 kya [37•,68••,79,81,82]. More 

recently, Europeans, South and East Asians have also migrated and admixed with local 

populations in southern Africa, giving rise to the modern-day ‘colored’ populations within 

this geographic region [3,57,83,84]. Overall, these above studies demonstrate that migration 

with subsequent admixture occurred at different points in time and over a wide geographic 

range, resulting in complex patterns of genetic variation in Africa.

Origin of African hunter-gatherer populations

Human populations practiced hunting-gathering/foraging strategies for much of their 

evolutionary history (Lee and Hitchcock, 2001). However, little is still known about the 

origin of African hunter-gatherer populations. Recent genome-wide SNP data indicated 

shared ancestry among East (Hadza and Sandawe) and South (San) African Khoesan-

speaking hunter-gatherers [37•] consistent with the results of a previous mtDNA and Y-

chromosome study [85]. Furthermore, mtDNA and Y-chromosome data suggested that these 

Khoesan-speakers likely shared a common ancestor ~35 kya and that the East African 

hunter-gatherers diverged from each other ~15 kya [85]. Interestingly, studies of genome-

wide variation have found that Central African Pygmy and San hunter-gatherers share 

common ancestry, suggesting either an ancient common origin or gene flow among these 

populations [3,86]. These studies are congruent with Y-chromosome data showing uniquely 

shared lineages between Pygmy and Khoesan-speaking populations [30]. In addition, other 

analyses have inferred common ancestry among San, Hadza, Sandawe and Pygmy hunter-

gatherers, implying a deep link between these populations [3,26••]. However, these latter 

results are also consistent with the possibility that shared variation among African hunter-

gatherers could have arisen through gene flow between the ancestors of the San and Pygmy 

populations or by the loss of shared alleles in the ancestors of the Hadza and Sandawe 

[26••].

Among hunter-gatherer populations, the ancestors of San Khoesan-speakers are inferred to 

have separated from other Africans >100 kya, representing the earliest population split in the 

modern human lineage (Figure 2) [25,29,88]. Furthermore, studies of African mtDNA and 
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autosomal diversity have suggested a deep time of divergence between the ancestors of 

Central African Pygmy and non-Pygmy populations ~60–70 kya [30,33,34] and a later 

divergence between ancestral western and eastern Pygmy populations >18 kya 

[29,30,33,34,89]. Fine-scale substructure was also observed among western Pygmies who 

diversified ~ 2.8 kya, possibly due to recent geo-graphic isolation, genetic drift, and 

differential levels of admixture between Pygmies and neighboring Bantu-speaking 

agriculturalists [30,33,34,90–93]. In addition, other analyses of autosomal and mtDNA 

variation inferred a higher effective population size (Ne) for the ancestors of Bantu-speaking 

agriculturalists with respect to Pygmy hunter-gatherers. These differences in Ne likely reflect 

the recent population expansion of ancestral Bantu-speakers associated with the emergence 

of agriculture and strong bottleneck events, occurring as early as 20 kya, in ancestral Pygmy 

populations [29,30,33,92,93].

Signatures of the trans-Atlantic movement

Africa is the geographic origin of millions of individuals of recent African descent in the 

United States and Caribbean whose ancestors were forcibly brought to the New World as 

slaves. Historical records have documented the movement of Africans into this region of the 

world primarily from locations along the western coast of Africa (from Senegal to Angola) 

(Figure 3) [94]. Subsequent to migration of indigenous Africans, there was considerable 

admixture with Europeans with a smaller contribution from indigenous American 

populations. Specifically, Afro-Caribbean populations are estimated to have ~65– 95% West 

African, ~4–27% European, and ~0–6% Native American ancestry [95–99]. Although 

pooled individuals from the Caribbean have a high proportion of African ancestry, fine-scale 

genetic structure has been observed within and between islands (particularly, Dominica, 

Grenada, St. Kitts, St. Lucia, St. Thomas, St. Vincent, Jamaica, and Trinidad) due to 

regional differences in levels of African and/or European ancestry [100•]. Similarly, a study 

of genetic admixture within Puerto Rico showed that levels of African ancestry varied 

geographically with the highest proportion occurring in the eastern part of the island where 

African slaves and their descendants historically engaged in sugar pro-duction [101]. In 

addition, genome-wide data have suggested that patterns of genetic ancestry in Cuba, Puerto 

Rico and Hispaniola (the Greater Antilles) were consistent with a model of two migration 

events from different regions of western Africa, implying that Afro-Caribbean populations 

have mixed African ancestry [102•]. These results are also congruent with a Y-chromosome 

study that found diverse haplotypes in Afro-Caribbeans from the Bahamas that were inferred 

to originate from different ethnic groups within West Central Africa [103]. Furthermore, 

isotope data from skeletal remains of enslaved Africans in Barbados suggested that first 

generation captives had different dietary histories likely due to differences in their 

geographic origins in Africa [104]. During the slave trade, the Caribbean has been an end-

point of migration for hundreds of years, resulting in diverse genetic patterns. Because of the 

complexity of past migration events, additional studies across a broader geographic range of 

the Caribbean are needed to fully understand the extent of genetic variability and the 

different demographic processes that have contributed to it in Afro-Caribbean populations.

African Americans also have a high proportion of ancestry originating from western Africa, 

particularly Bantu and non-Bantu Niger-Kordofanian ancestry [3,36,105]. However, African 
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Americans are characterized by genetic variability between populations living in different 

regions of the United States. An analysis of Y-chromosome loci genotyped in ~1300 

individuals from Africa, the Caribbean, the District of Columbia (DC) and South Carolina 

(SC) detected genetic differentiation among African Americans that was largely attributed to 

geo-graphic differences in levels of European admixture [106•,107]. Specifically, a low 

proportion of European admixture was observed in individuals from SC compared to DC. 

These findings are in agreement with a prior study that also found low levels of European 

ancestry in SC, particularly among the Gullah Islanders [107,108]. Genome-wide data also 

demonstrated that individuals who self-identified as African American have a range of 

genetic ancestry with some individuals showing close to no West African ancestry, while 

others have almost complete West African ancestry [36]. Indeed, these studies indicate that 

populations of African descent have a complex history resulting in genetic heterogeneity. In 

the future, African Americans could potentially become more genetically diverse. 

Particularly, this pattern could emerge as individuals migrate from regions of Africa, not 

originally represented in the African Diaspora, into the United States contributing ancestry 

to subsequent generations of individuals who may self-identify as African Americans.

Implications of genetic structure and admixture for disease susceptibility 

mapping

Given the complex population history in the United States and Caribbean, it is not surprising 

that populations of recent African origin are genetically heterogeneous. This pattern of 

diversity has implications for traditional mapping studies of disease loci, which rely on 

accurate knowledge of population structure in cases and controls to avoid erroneous 

associations [1,109,110]. An alternative strategy specifically aimed at identifying variants 

associated with differential disease risk in admixed populations is mapping admixture by 

linkage disequilibrium (MALD) or ‘admixture mapping’. This approach uses admixture 

information to localize disease-associated polymorphisms that are divergent in frequency in 

the parental populations that have contributed to the population under study. MALD 

assumes that the genomic region containing disease-susceptibility alleles will be enriched 

for ancestry from the parental population in which disease risk is more prevalent [111]. 

Thus, MALD can be used to identify regions of the genome that potentially contain loci 

associated with differential disease susceptibility. Indeed, recent successes using this 

approach include the identification of loci underlying hypertension-attributed kidney disease 

[112,113] and prostate cancer [114,115], which disproportionately affect individuals of 

African descent.

Evolutionary history has influenced patterns of genetic variation, including the frequency 

and/or distribution of disease-susceptibility alleles in human populations, which could have 

implications for the onset of disease. For example, alleles at several genes associated with 

age-related macular degeneration (AMD), which is a break-down of tissue at the back of the 

eyes responsible for fine-scale vision, have been observed at different frequencies in human 

populations. In particular, the G-allele at SNP rs2230199, correlated with increased risk for 

AMD, is found at much higher frequency in European populations compared to African and 

Asian populations [116]. A number of studies have also reported higher mortality rates for 
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several types of cancers, including breast, ovarian and prostate, in individuals of African 

ancestry compared to individuals of European or Asian descent [117–120]. Although 

environmental factors such as diet and access to health care play a key role in differential 

disease risk, genetic variation also contributes to differences in cancer susceptibility between 

populations. Recently, micro-RNAs (miRNAs) have been correlated with the onset, 

progression, and/or metastasis of cancers with known health disparities among populations. 

For example, the T-allele (rs12355840) within miRNA hsa-mir-202 has been shown to 

down-regulate expression of known cancer genes, and to be protective against breast cancer 

mortality [121]. A recent analysis of global miRNA variation demonstrated that African and 

African American populations have a lower frequency of the hsa-mir-202 T-allele compared 

to non-Africans [122], raising the possibility that differences in allele frequency at this locus 

could potentially contribute to current disparities in breast cancer mortality.

Whether these between-population differences in the frequency of alleles associated with 

disease susceptibility are due to demographic history or natural selection requires more 

detailed analyses. However, it is clear that differences in the frequency of alleles correlated 

with disease exist among human populations. A recent con-sequence of this finding has been 

the emergence of ‘racialized medicine’ to treat diseases that disproportionately affect a 

given population. This strategy assumes that the frequencies of genetic variants influencing 

drug metabolism and/or the onset of disease are different between ‘races’ (i.e. the 

categorization of individuals into discrete groups based on shared physical and/or cultural 

characteristics) but similar among individuals within the same ‘race’ [123]. However, 

members of a self-identified ‘race’ may not necessarily be genetically homogenous as 

previously discussed for populations of recent African descent. For admixed populations, 

like African Americans, it may be more beneficial to determine individual ancestry and to 

devise treatments based on personalized genomic variation.

Conclusions and future directions

Over the last several years, genetic analyses of ever-increasing numbers of genomes have 

provided significant insight into human evolutionary history. However, a continued 

challenge has been the inclusion of diverse African populations in studies aimed at 

investigating fine-scale population structure and ancient demographic pat-terns, including 

archaic admixture in Africa. Given the complex human population history in Africa, 

putative evidence for archaic admixture will need to be weighed against alternative 

scenarios, such as ancient population structure, that could give rise to similar patterns. To 

date, the genomes of a small fraction of the 2000 ethno-linguistic groups in Africa have been 

sequenced. As the cost of whole genome sequencing decreases, it will become feasible to 

conduct large-scale genomic sequencing of ethnically and geographically diverse Africans 

for the more detailed study of human population history. Furthermore, the integration of 

genomic information with phenotypic data, including health-related traits and tissue-specific 

gene expression, will be beneficial for identifying novel variation underlying complex 

disease in populations of African descent. Overall, these studies will shed light on modern 

human origins, African population history, and the genetic basis of complex traits, including 

disease susceptibility.
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Figure 1. 
The geography of major Homo sapiens (H. sapiens) fossil sites. This map, adapted from [8], 

illustrates the geographic distribution of sites in Africa where early archaic, late archaic and 

modern H. sapiens have been found. The labeled sites are the names of fossil remains that 

have been designated as modern H. sapiens. A more detailed description of the ‘modern’ 

features of these fossils is given in Table 1.
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Figure 2. 
A model of divergence and admixture in Africa. This figure illustrates some of the proposed 

divergence events in Africa, for example the divergence of San Khoesan-speaking hunter-

gatherers (HGs) ancestors >100 kya [25,29], and the differentiation of the ancestor of 

Pygmy HGs from a non-Pygmy population ~60–70 kya [30,33,34]. Genetic substructure has 

also been detected among western Pygmies who also show evidence for admixture with 

Central African Bantu-speaking agriculturalists [30,33,34,90–93]. Solid lines indicate gene 

flow between the ancestors of modern populations, and the dashed arrows indicate archaic 

introgression. Studies have reported evidence for archaic introgression from an unknown 

archaic species into several populations including the Biaka Pygmy and the Yoruba 

[46,51,53] shown here by the dashed arrows and question marks (which indicate that 

additional studies of African populations are needed to understand the extent and timing of 

archaic admixture in Africa). Lastly, the decreasing intensity of the blue color within the 
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modern human lineage represents the loss of diversity as AMHs migrated across the globe 

from Africa within the last 100,000 years.
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Figure 3. 
The geography of major linguistic families and of historic migration events in Africa. Africa 

not only has the highest levels of genetic diversity, but a considerable amount of linguistic 

diversity is also found across the continent. Currently, more than 2000 distinct languages 

exist in Africa, representing about a third of the world’s languages, which can be classified 

into four major linguistic families: (1) Niger-Kordofanian is a family of languages 

(including Bantu) spoken primarily by agriculturalists across a wide geographic region in 

Africa; (2) Nilo-Saharan languages are spoken predominantly by pastoralists in Central and 

East Africa; (3) Afroasiatic languages are spoken mainly by pastoralists and agropastoralists 

in East and North Africa; (4) Khoesan, which consists of languages with click consonants, is 

spoken primarily by hunter-gatherer populations in East and South Africa. This map, 

adapted from [1,2], also shows a number of key migration events, most notably the 

geographic expansion of Bantu Niger-Kordofanian-speakers across Africa from a homeland 

near the Nigeria/Cameroon border, as well as the general geographic regions (shown here by 
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the red circles) where enslaved Africans were transported from Africa to the New World 

based on historical records.
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Table 1

Description of modern human fossils in Africa. Here we outline some of the major morphological features 

identified in anatomically modern humans found in Africa, along with the remains recovered from each site, 

and the inferred age. This description corresponds to the fossils/geographic sites listed in Figure 1.

Specimen Recovered remains Major anatomical features Age (in years)

Omo 1
Omo2

Partial cranium and mandible 
(Omo 1)
Partial cranium (Omo 2)

The cranial vault of Omo 1 is high and globular, with a 
nearly vertical frontal profile, rounded occipital, and 
pronounced parietal bosses. The mandible has a slight 
chin. The postcranium is human-like in overall 
morphology [7]
Omo 2 has a mosaic of modern (high vault) and archaic 
traits (strong sagittal keeling and angled occipital) [7].

195,000

Herto Crania High cranial vault with a cranial capacity of 1450 cm3, at 
the high end of the human range. Some archaic 
morphology includes projecting supraorbital and flexed 
occipital tori [6,7].

154,000–160,000

Singa Partial cranium Vaulted forehead and reduced supraorbital morphology; 
cranial capacity estimated to be 1340 cm3 [124].

>133,000

Mumba Teeth Size and shape of molars are consistent with AMHs 130,000

Klasies Partial cranium, mandible Maxilla and mandible are metrically within the range of 
modern humans; overall, there is a reduction in tooth size 
consistent with AMH morphology [8].

120,000

Border Cave Partial cranium, mandible Cranium has a high curved frontal bone and the 
supraorbital bone is slightly protrusive [8].

90,000

Aduma/Bouri Cranial fragments Characterized by a high vault profile, well-curved 
parietals and the absence of an occipital torus. Cranial 
dimensions cluster with AMHs [11].

79,000–105,000

Dire-Dawa Partial mandible Size and shape of mandible are consistent with AMH 
[124].

61,000–77,000

Die Kelders Cave Isolated teeth There is an overall reduction in the size of the crowns 
compared to archaic populations and overall 
morphological features resemble modern sub-Saharan 
Africans [125].

60,000–80,000

Zouhra Cave at El Harhoura Teeth Size of the upper and lower molars, and enamel thickness 
are similar to AMH [126].

Poorly dated

Haua Fteah Partial mandibles Absence of derived Neanderthal traits [124,127]. 65,00–73,000

Temara Cranial and mandibular 
fragments

Morphology and metrics of occipital are similar to AMH; 
no discernible presence of a supraorbital torus [128].

Poorly dated

Grotte des Contrebandiers Teeth and mandibular 
fragments Reduced

Reduced anterior dentition relative to molars and reduced 
bucco-linguial expansion of front teeth contrary to 
Neanderthal specimens [126].

Poorly dated

Dar es-Soltane Partial cranium and mandible A flattened mid-face and presence of a chin consistent 
with AMHs [8].

Poorly dated
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